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PREFACE TO THE SECOND EDITION

The preface to the first edition of this book has been retained because
it states so clearly the origin, purpose, and guiding principles of this
second edition as well as of the first.

The progress in certain branches of transformer engineering has been
so rapid during the twelve years that have elapsed since the first edition
was 1ssued that a second edition was prepared to provide up-to-date
information for those who habitually refer to it as well as for those
who have become newly interested in the subject.

The chapters that have been changed most are those relating to
insulation, thermal characteristics, and the load ratio control practice.

Chapter IX on thermal characteristics includes among other new ma-
terial (@) the latest data on the aging of insulation, (0) more accurate
methods for the calculation of the temperature rise of water-cooled
transformers, (¢) a rational formula for the temperature rise of wind-
ings above the oil temperature, and (d) explanation of the latest con-
cepts of permissible overloading of transformers as covered in the
A.S.A. Guides for Operation of Transformers.

Chapter XV on insulation has been made more complete with the
addition of new material, including the latest data on the complete volt-
time curve of solid insulation and oil, ranging from approximately one
microsecond to infinite time.

While this revision was in progress, L. I'. Blume, the editor, died
rather suddenly, to the sorrow of his associates ; and the revision or re-
writing of some of the chapters for which he was responsible was com-
pleted by others whose names appear with his.

THE AUTHORS

Pittsfield, Mass.
January, 1951
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Mutual Effect of Excitation and Impedance Characteristics. As
discussed in the chapter on excitation characteristics, to a very close
approximation the shunt or excitation volt-amperes and watts of the
transformer are independent of the currents in the windings (as may
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F1c. 16. Leakage field and magnetomotive force diagram of a simple concentric
transformer.

be gathered also from the equivalent circuits, especially from that of
Fig. 15b), and, similarly, the series or impedance volt-amperes and watts
of the transformer are substantially independent of the excitation on
the windings. Therefore, the total losses of a transformer under any
operating condition are conventionally obtained by combining the corre-
sponding excitation and impedance losses as determined independently
of each other.

Reactance. Calculation of Leakage Flux. Figure 16 represents the
longitudinal cross section of a simple transformer having concentric
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primary and secondary windings and the leakage flux between them
produced by the equal and opposite primary and secondary ampere-turns.
This figure could also represent the cross section and magnetic field of
two long bus bars carrying equal currents in opposite directions and
acting as return circuit to each other. Conceived
of as bus bars, p and s would be considered to form ’" L
a single loop or coil, and the magnetic field would :
be calculated as that of a single coil. This fact sug-
gests that the two independent solenoids p and s
may be considered as return circuits to each other,
that is, as forming a single loop. This idea is de- ime
veloped progressively in Fig. 17a, b, and ¢. The
magnetomotive forces and magnetic field of Fig.
17a can obviously be replaced by those of Fig. 170. !
This in its turn can be “developed,” that is, straight-
ened out, without materially changing the magnetic

q

(D) (¢)

IF16. 17. Tllustrating the conception of primary and secondary windings as return
circuits to each other, and constituting jointly a single circuit with a single re-
actance. a. End view of actual primary and secondary solenoids. External con-
nections not shown. b. An equivalent of a: p and g extend the full length of the
solenoids. ¢. Showing the curved rectangle of b “developed” or straightened out.

field, as in Fig. 17¢c. Thus, we see that p and s form one closed loop
with reference to their leakage magnetic field. This conception greatly
simplifies the procedure in developing formulas for leakage reactance,
permitting the use of single coil or solenoid formulas for the calcula-
tion of reactance and leakage flux.

In the upper portion of Fig. 16 is shown the m.m.f. diagram of the
distributed ampere-turns due to the load current of the transformer.
The m.m.{. at any point « is the total ampere-turns of the windings to
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the left (or to the right) * of x, giving proper consideration to the
algebraic signs of the currents, e.g., the primary considered positive,
secondary negative, or vice versa. The m.m.f. producing the field at
the gap g is the ampere-turns of p or of s (not the sum of the two), and
we may write, for the flux density B, in the gap

4w NI

¢ = %7 gausses (& in cm.) (14a)
NI

= 3.2 = lines/sq. in. (& in in.) (14d)

in which % is the effective length of the leakage field along the axis of
the solenoids.

To a first approximation, we may assume that the leakage flux density
(Fig. 16) is uniform in a direction parallel to the coils from one end of
the gap to the other ; that, when the flux passes beyond the coils, it di-
verges rapidly, its density is reduced to a low value, most of the flux
finds the shortest path to the iron of the yokes or legs and returns with
negligible drop; and that, therefore, the reluctance of the outside path
of the leakage flux is negligible. Accordingly, we may approximate the
proper value of 4 by the height of the windings.

On this basis, the m.m.f. diagram of Fig. 16 becomes also the flux-

density diagram. If the flux density of the gap g is taken as uniform,
the total flux ¢, in the gap will be the density multiplied by the area
of the gap. In inch units,

N
g = <3.2 75 (27rg) lines (15)
1

where 7 is the mean radius of the gap, and g its width.
The contribution of this flux to the reactance voltage will be

27fN/108 times the flux,
e = 2;%‘ iv (3.2 fvﬁ—’) (2wrg) volts (16a)
126f(N21)rg
B 10%h
126fN?rg
& = 10%h ©
* The reader may convince himself easily that it is immaterial whether the

algebraic summation of the ampere-turns is reckoned from the left up to x or from
the right up to #, except for the algebraic sign of the sum.

volts (16d)

(17
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PX)y = R 18

X =0 " 18

Equation 18 emphasizes the fact that the leakage reactance of a
transformer consumes wattless power in the leakage space. This equa-
tion has at least two very important advantages over equations 17 and
16 for the purposes of this chapter.

First, it involves the quantity NI which is the same for the primary
as for the secondary, regardless of what their number of turns may be,
whereas both equations 17 and 16 involve N by itself, which is different
for different windings. Thus, the reactance volt-amperes of a trans-
former are the same whether reckoned in terms of one or the other
of the two windings, in contrast with the reactance olums which vary
as the square of the turns, and the reactance wolts which vary as the
first power of the turns.

Second, the derivation of equations 16 and 17 implies that the flux
links a certain winding and not another. Although it can be shown
that, assuming the primary and the secondary windings connected in
series opposition, it does not matter whether the flux links the turns on
the right or on the left, such discussions tend to become involved.
Equation 18, however, can be used without any reference to flux linkages
for, if so much reactive power is flowing into the leakage field, there
must be that much reactive power
input into the exciting winding
(in addition to any loads across
the secondary), and, therefore,
the transformer must display a
corresponding eflective leakage 65
reactance between its input and

output terminals. This concep-

tion affords us a method (which
we shall call “reactive kv-a. Fig 18. A general resistance network.
method”) whereby equation 18

may be extended readily so as to apply to more general winding ar-

rangements and to non-uniform fields.

Reactive Kv-a. Method. TFigure 18 represents a generalized network
through which the line current / finds its way. Assume that the dis-
tribution of the currents (iy, 4s, etc.) in the individual branches of the
network is known, and the resistances (71, s, etc.) of the branches are
also given. Required to find the effective resistance Resr. of the network
between its input and output terminals. Obviously, the watts consumed
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by the network will be IR, the Regr. to be calculated. But the watts
consumed by the network may also be obtained by summing up the watts
in each branch:*

I2Ret. = 41271 - 1o2rg oo (19a)
k=n
= 2, @ (19%)
k=1
and, therefore,
pACEA
Reff. = —'}‘2_" (20}

This general method is equally applicable to the effective reactance of
a network as to its resistance, and we may write:

k=n
PPXer. = Y, (%) (21)
k=1
E(izx)k
Xefi, = ——— (22)
Z'Z

The method applies not only to concentrated impedance links but also
to distributed fields, as in the present problem, as follows.

If the reactive volt-amperes in the different zones of the magnetic
field are known, they can be added together to obtain the total reactive
v-a. input into the circuit. Formulas have already been given to calculate
the reactive v-a. in any gap in which the density is uniform. Since the
reactive v-a. vary as the square of the ampere-turns acting on the gap
(see equation 18), it follows that the total effective cross section of the
Jeakage ficld consisting of zones of different density can be found by
adding the weighted cross section of the different zones, the weighting
factor of each zone being proportional to the square of the ampere-turns
acting on it. The procedure is as follows:

(a) Interleaved-Coil Designs.

Figure 19a represents in cross section the general case of a set of {lat

* The alternative to equation 20 would have been to find the effective impedance
by simplifying the network by mesh-star and star-mesh transformations, or by
determining what are in series, what in parallel, and reducing the network accord-
ingly. These are very laborious in contrast to the simplicity of cquation 20. The
reactive kv-a. method requires, of course, that the distribution of the currents be
known, but this is a relatively easy matter in many of the transformer impedance
problems.
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primary and secondary coils sandwiched in with each other. The wind-
ings may be either shell-type “pancake” coils or core-type disk coils.

If the values of #2r in the different coils and gaps are known, the total
effective reactance can be determined by equation 22. Gap densities
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Fic. 19. Arrangement of windings and distribution of leakage m.m.f. of an inter-
leaved design. «. Arrangement of coils. b. M.m.f. diagram of the leakage field.

differ from each other, and their values follow the m.m.f. diagram (Fig.
19). Since the %x of a gap varies with the square of the flux density
in the gap, the weighting factor for each gap will be (ni/NI)2, ni being
the ampere-turns acting on the gap, and N/ the total ampere-turns of
the primary (or secondary) winding. Therefore, the reactive v-a. con-
sumed by the gaps will be (from equations 18 and 22),

126f(NI)? )12 o) ?
< [ (00 1] oo
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or letting (ni)/(IVI) be represented by my for convenience,

2, k=n
126/ (VL)Y > migy v-a. (230)
108h k=1
and no questions need be asked as to whether the fluxes close one way
or another, or whether anything is in series or in parallel.

The density of the leakage field within
the coils themselves is not constant between
the two surfaces of a given current-carry-
ing coil, but at a given surface is the
same as the density of the gap adjacent
to that surface. Thus, for the kth coil
(Fig. 20), the relative density at one sur-
face will be my, at the other, my—q, chang-
ing by (my — my—1) through the coil
width 2, The relative density at & will
be

(I2X) =

[("i)k";”i)k—j]

(nt)y &
ik 1 ‘_x.ifl;- dz

e, —]

Fic. 20. Variation of
leakage  field intensity
along the width of a coil and the summation for the reactive

and its contribution to re- v-a. of the whole width of the coil will

x
my_y + — (mp — mp_1) (24)
W

active volt-amperes. be
(I2X) of kth ool
I [ [ e+ £ )f ] s
= —— My my — mp_1) | dx a
108 nlJy U T Y

Carrying out the simple integration indicated, and then summing up
for all the coils,
2, k=n
1—2—9{%]:—1)—2162 [my2 + mp 1+ mpmp_1] %‘ (25b)
In equation 25b the algebraic sign of (mymy—1) must be entered
correctly, as the magnetomotive force acting on a gap may be either
positive or negative. Of course, m;? and m? 1 will always be positive.
The summation for the gaps (indicated by equation 23b) and that
for the coils (indicated by equation 25b) may be combined, as in equa-
tions 26b and 27b, and conducted conveniently in tabular form. So we
have, for interleaved (flat-coil) designs (Fig. 19a),

(IZX) of all coils =
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126f(NI)? #
LAY T

IzX otal — I< 26

( )total e : (26a)
k=n

D = > [mi%g, + (mi® + mPp_y + mymg_y)wi/3] (260)
k=1

in which K * is introduced as a correction factor to compensate for
various approximate assumptions made, and D will be seen to be the
effective equivalent width of the leakage field as a uniform field with
full primary (or secondary) ampere-turns acting on it.

(b) Cylindrical-Coil Designs (Tig. 16).

In concentric transformers, the radius # is not the same for all the
coils and gaps, and 7 therefore must be included in the summation for
D as follows. Letting r;, stand for the mean radius of the kth gap,
and 7’ for that of the kth coil,

_126f(NI)?

(I*°X)totat = K T (rD) (27a)
k=n

(rD) = D [mi*rige + (mi® + mPu_y + mpmp_1)r"xwe/3] (270)
P

Leakage Field Non-Uniform in a Longitudinal Direction. It may
be seen from the foregoing that the reactance calculation of a trans-
former is rather involved. Yet, if equations 26 and 27 were all there
was to it, transformer designers would be contented. But these equa-
tions are only approximations, based on the assumptions that the flux
density is uniform along the flux lines within the coil boundaries (which
is not exactly right) and zero outside of the coil boundaries (which also
is not exactly right).

The degree of approximation involved in these equations is a function
of the ratio 2h/A, A being the effective width of the field per wave
length ¥ of the m.m.f. diagram (Fig. 19): the larger this ratio, the
closer is the approximation. In concentric transformers, with a 2h/A
ratio of 10-20, the approximation is within commercial tolerance limits.
In shell-type and in interleaved disc designs, with a 2h/A ratio of the
order of 1-4, this simple approximation is not acceptable, and some
correction factor has to be applied. Even in concentric designs, if the
coils are extremely short compared with usual proportions, the m.m.{.
drop in the outside path cannot be ignored.

* See equations 29, 30, and 31.

+In symmetrical designs, the m.m.f. diagram repeats itself like a standing wave
in space. One “wave length” includes a positive and a negative loop.
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Non-uniformity along the flux lines is found to be a much more
difficult problem than non-uniformity transverse to the flux lines, be-
cause the relative densities in the latter case can be approximated by
the m.m.f. diagram (Fig. 19) and proper allowances made as in equa-
tions 26 and 27, but no simple guide is available to the former.

Still more serious difficulties arise if the primary and secondary coils
are of unequal length (hs% Ny), or if either one of the coils is non-
uniform, or if appreciable taps are taken out from within the windings.

Some of the methods that have been proposed for the solution of
one or another class of these problems follow.

Empirical Correction Factors. Results within engineering require-
ments can be obtained by empirical correction factors for a customary
range of proportions, based on a large number of data, but this method
has the limitation that correction curves so obtained cannot be safely
extrapolated, and they fail when the design proportions are unusual.

It must be realized further that this method is suitable only for
simple symmetrical designs with primary and secondary coils of equal
length .

Use of Self and Mutual Inductance Formulas. Equation 28:

Xio = Xy + Xo — 2Myy (28)
defines the leakage reactance X1» in terms of the self and mutual mag-
netizing reactances Xy, Xs, and M., and, therefore, if these latter can
be computed,” the former follows. Electrical literature, especially
various bulletins of the National Bureau of Standards,® contains
many valuable formulas for self and mutual inductance calculations.

Although mathematically fundamental, this method has several prac-
tical difficulties and limitations:

(e) Since, in this method, leakage inductance has to be obtained as
the difference of two quantities very nearly equal to each other, that
is, as

(X1 + Xo) — 2M12)
the self and mutual inductance values have to be calculated correct to
four or more significant figures to obtain the leakage inductance correct
to two significant figures. Such calculations therefore cannot be made
with ordinary slide rules.

(0) Self and mutual inductance formulas which take into account
coil thickness are very laborious.

(¢) The presence of iron adds further factors to be taken into ac-
count. In the majority of simple symmetrical designs, the core has very

* See more especially Scientific Paper 169 of the National Bureau of Standards.

'
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little effect on the leakage reactance, and air-core self and mutual in-
ductance formulas can be used for them if desired. But simple sym-
metrical designs do not require such laborious methods, and the very
cases in which the reactance cannot be calculated by simple methods
are generally those whose reactance is influenced materially by the
presence of the iron core in the return magnetic circuit of a component
of the leakage field; and, therefore, the presence of the core has to be
taken into account, and air-core inductance formulas are not adequate.
The presence of the core can be taken into account by the so-called
method of images discussed below, but it will be appreciated that the
core is not a smooth continuous mirror, and therefore again simplifying
approximations have to be made.

(d) Finally, if the primary and sec- c
ondary windings cannot be considered \
as a single uniform continuous coil
(and they cannot be so considered in
shell-type or in interleaved disk-coil
designs, or in concentric designs having ”
sections tapped out from the middle of
the windings, or in any design with
varying coil dimensions), then, self
and mutual inductance values have to
be calculated not only for a large num-
ber of subdivisions of the windings, Tic. 21. C represents the cross
but also between the images of each section of a conductor of any
of these coils and the'real c‘oils.. This zggi’cogﬂzrn};nizpil1r;relxxtt.1]eQC r:(s)sz;
labor mounts very rapidly with increas- (. ;0 The algebraic sum of
ing number of coils, and inaccuracies  the magnetomotive force drops,
due to use of limited number of signifi- along the periphery of 0, is equal
cant figures in the various terms tend to 4r times the amperes flowing
fo fnotease. through the spot perpendicular to

plane of the spot. Currents out-

For these reasons, self and mutual . e spot do not alter this
inductance formulas are little used in relationship.
leakage reactance computations.

Application of Field Equations. (a) Magnetic flux always forms a
closed loop, in contrast to electrostatic flux which radiates from one
point and terminates at another.

(b) If we consider a small spot in the magnetic field, say Q in Fig.
21, and sum up the total m.m.f. (ampere-turns) consumed by the flux
along the perimeter of the spot, this must equal the amperes flowing
through the spot perpendicular to the spot.
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The presence of a current flow in the neighborhood of the spot but
outside of it will affect the flux at various points within the spot, but the
m.m.f. of this will be found to cancel out when summed up around the
spot.

These two elementary facts, when stated in mathematical form * and
solved with terminal conditions incorporated, give us a formula for the
distribution of the magnetic field and hence a formula for reactance.

To carry out such an analysis for each individual problem would
require a prohibitive amount of labor, but if the problem could be
solved in a generalized form it might be made to furnish correction
formulas broadly applicable to all transformers. This was attempted
many years ago by Dr. Rogowski,* and a solution was obtained by him
applicable to symmetrical shell-type and interleaved disk-coil designs.

When iron is absent, or far enough from coils to make its effect
negligible, the Rogowski correction factor to our formulas 26 and 27 is
* The two statements of paragraphs (a) and (b) take the mathematical forms

9B, 9B,

pe +-67=0 1)

(@)

dBy 0B, 47 |
it e POy 15 2
@ dx Jy 10 i @

where B, and By are the flux densities in the x and y directions, respectively, and .
is the current density at the spot (x, 3) perpendicular to the x-y plane, and 4x/10
converts the current into m.m.f. units. Of course, in regions where there is no
current, 7, in (2) is equated to zero.
If we represent by ¢, the total flux having the axis z and surrounding the current
iz, then
04>z —a‘t’z

B = ® By = )

¢ is called the “vector potential’” of the flux density B.
It will be seen that (3) and (4) are consistent with (1), as their substitution renders
(1) identically zero. Their substitution into (2) gives

%P, . 4m .

=— 5
ax? ay* 10 “ ®)

The solution of (5), involving exponential and harmonic series, gives the value of
¢2, and the integration of the product of ¢, with 4, throughout the x-y plane gives
the total flux linkages (and hence the inductance) per unit length of the windings in
the direction (z) of the current, that is, for unit length along the mean perimeter of
the turns.

1 Superior numbers refer to the ‘“References” which are listed at the end of the
chapter.
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1 — e=2nh/
K=1—-+—— 29
2wh/\ 29)

A being the wave length of the mm.f. wave (Fig. 19). When the effect
of the core on reactance is to be taken into account, the correction factor
depends on whether the design is core or shell type as follows:

For the core-type disk windings:

K=1-

1 — e——21rh/)\ e—‘hrb/)x
2ah/\ [ )

in which b is the distance between coil and core leg.
For shell-type designs:

(1 - e—w/»] (30)

1 — e_~7"h/)\ e—41rb/)\
K=1-— 1= 1 — e=27h/N) X
2h/A [ g L= )
L2 Ll Ll
— ~L— (14 e=2n@=0/N) b — —— = 2r(i20+20)/2 (31)
L s

in which L is the mean coil perimeter, Ly that part of the perimeter
which has iron on both sides, Lo the rest of the coil perimeter, and b
and 0" distances from iron to coil on the two sides.

A glance at the equations and transformations of the original Rogow-
ski article* reveals at once how formidable is the undertaking to cal-
culate the reactance of an arbitrary field by such equations and how
necessary to make many simplifying assumptions. The Rogowski cor-
rection, having been developed with the aid of such approximations,
gives reasonably good results only with those designs that conform to
the simplifying assumptions made, and fails in others. These “others”
include the important classes of designs with unequal primary and
secondary lengths (hy, &2), coils interrupted by taps (/i; and . inter-
rupted by breaks of considerable length), high-voltage transformers
with non-uniform ampere-turn distribution due to grading of insulation
(especially in grounded designs), etc.

Resolution of the Leakage Field into Axial and Transverse Compo-
nents. The calculation of certain types of difficult reactance problems
is greatly simplified by a method due to H. O. Stephens,® which consists
of resolving the magnetic field into two components, one axial and the
other radial, best explained by a simple example.

TFigure 22 shows a primary and a secondary coil of unequal length.
They may be conceived of as either a concentric or an interleaved de-
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sign, but, to assist in visualization, let them be assumed concentric wind-
ings. The coils are shown with either a plus or a minus sign to indicate
that their ampere-turns are opposed.

The greater the disparity between /iy
and hs, the greater is the difficulty of
calculating the reactance of such a de-
sign accurately by elementary formulas.

According to the Stephens scheme, a
simplified complete equivalent of this is
shown in Fig. 23, comprising two com-

Core
AU ALY

ponents.

Component I.  Axial or Concentric
Component, Xy. Figure 23a shows this
component, comprising coils 1 and 2.
Coil 1 is identical with P of Fig. 22.
Coil 2 (that is, Za 4+ 2b 4 2c¢) is one
uniform continuous coil of the same
width w as S, but of the same length iy as P. Coil 2 has the same
total ampere-turns and the same ampere-turns per inch distribution as
coil 1; and, as the two coils are of equal length and symmetrical, their
leakage reactance can be calculated with far closer approximation than
that of Fig. 22 directly. The purpose in showing coil 2 (Irig. 23e) in

N

ANSN

Fic. 22. Concentric design with
primary and secondary of un-
' equal length.

| I
T+ No. 2b + M3
— e -~k
Y|
N
No. 7 No. 2a o, 2 B No. ¢ %)
hy

\ ‘*:_.__ﬁhi_ L

= O

Ko. 2¢ ‘j + MNos hy

| = 40
Component I Component II

(a) (0)

Fic. 23. Equivalent representation of Fig. 22 in terms of two components. a. Con-
centric component with coils of equal length. &. Interleaved component.

three sections is merely to indicate its relationship to the original sec-
ondary (which has the configuration of coil 2a) and to fictitious wind-
ings 2b and Zc.

REACTANCE 85

Since coil 2 has the same ampere-turns as 1, and, hence, the same
as P or §, but is hy/hs times as long. as S, it follows that the ampere-
turn density (that is, ampere-turns per inch) in coil 2 are hs/h; fraction
of that in S.

Component II. Transverse or Interleaved Component, Xy. This
component comprises coils 3, 4, and 5 (Fig. 23b). Their dimensions
are indicated in terms of the dimensions of the coils of Fig. 22. The
ampere-turns of these coils are such that, when the (3 -+ 4 + 5) en-
semble is superposed on (2a + 20 -+ 2¢) ensemble of Fig. 23a, coil 3
neutralizes completely the ampere-turns of 20, coil 5 that of 2¢, and coil
4 adds to that of Z2a and makes it identical with that of the actual sec-
ondary .S. When this condition exists, then, the complete equivalence
of Fig. 23 to Fig. 22 is established. This condition is realized if the
various ampere-turns are as follows:

(n1)aq = —(NI)pho/hy
(ni)ap = — (N1)phs/l
(mi)ge = — (NI)phy/ly
(ne)g = 4 (NI)phs/hy
(ni)y = —(NID)p(hs + ha) /I
(ni)s = +(ND)pha/M J

Tt will be seen that the primary and secondary ampere-turns of each one
of the two component systems add up to zero.

The reactance of this equivalent system will be seen to be the sum
of Xy from TFig. 23a, Xy from Fig. 23b, and their mutual induction
Myr:

il

(32)

Xps = X1+ X &= 2Myax (33)

An examination of Fig. 23a and b will show that the leakage field of
component II is in quadrature with that of component I, and that
therefore mutual reactance between the two component systems will be
either zero or one of a second order of magnitude arising from lack
of perfect symmetry and from curvature of flux lines. Accordingly,
as an approximation, My may be ignored and the above equation
written as

Xps = X1+ Xur (34)

As X1 is a symmetrical concentric reactance, and Xy a normal inter-
leaved reactance, both calculable by appropriate standard formulas, the
calculation of Xpg is thereby greatly simplified.
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sistance R interposed in series between the input and the output
terminals. The single leakage reactance is the sum of the primary and
secondary leakage reactances, and the single resistance the sum of the
primary and secondary resistances, all reduced to the basis of the circuit
in terms of which the voltage regulation is to be expressed.

Based on Fig. 26, the following approximate formula gives the voltage
regulation very closely for most cases:

2

9% Regulation = kpPpIR + kqPpIX + (kP%IXZOOLQ%IR> (46a)
in which k is the actual load as a fraction of the base load on which
the values of %IR and %IX have been based; p is the power factor
(or cos 0) of the load; and ¢ is the reactance factor (or sin #) of the
load. Power factor is a positive number, but the reactance factor may
be positive or negative, depending on whether the load is lagging or
leading, respectively :

/
g=+V1-—7p*
[n equation 46a, the algebraic sign of ¢ for lagging loads is positive.
If the voltage regulation and the resistance and reactance drops are
expressed in per-unit values, the formula becomes

. . . (kpX — kgR)? .
Regulation (per unit) = kpR + kgX -+ —-é—— (46b)

The only difference in the two formulas will be seen to be in the
denominator of the fraction—200 in one case, 2 in the other.
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CHAPTER V

IMPEDANCE CHARACTERISTICS OF MULTICIRCUIT
TRANSFORMERS

By A. Bovajian

Necessity for Multicircuit Transformers. Since the purpose of a
simple (two-winding) transformer is to interconnect two circuits of
different voltage rating, it is obvious that a multicircuit transformer
would naturally be considered when three or more circuits are to be
interconnected. Such interconnection could be accomplished by a
plurality of two-circuit transformers also, but only at greater expense
and lower efficiency. Aside from the insulation of circuits of different
voltages from cach other, multicircuit transformers are also utilized
to introduce certain impedances between circuits for control of load
division or of short-circuit currents.

An obvious occasion for a multicircuit transformer is when it is
desired to feed a distribution system from two transmission circuits of
different voltages, whether for continuity of service or economy of
operation. A slightly different, but essentially similar, case is that of a
generating system feeding two or more outgoing transmission circuits
of different voltages. The necessity for handling an auxiliary load,
such as a synchronous condenser or a local load, at a voltage different
from that of either the primary or the secondary voltage, generally calls
for a three-winding transformer. Split-winding generators are another
group calling for multicircuit transformers, with the interesting feature
that they require two separate primary windings of the same voltage.
A similar case is the occasional need to subdivide the secondary load into
two separate secondary windings for the purpose of reducing the short-
circuit kv-a. due to faults, through manipulation of the transformer
reactances without serious derangement of the voltage regulation of the
system. Testing transformers with potential coils for direct voltmeter
connection will be recognized as another special class of multicircuit
transformers with their own peculiar problems. Auto-transformers
with tertiary or other insulated windings are still other examples of
multicircuit transformers. TFinally, load ratio control circuits frequently

involve complicated multicircuit problems.
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