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Introduction: 

In January 2000 Mombello and MÖller [1] published a transformer model that accounts for 

frequency-dependent impedances, losses, and resonances. In subsequent discussions with 

the original authors, Bryce Hesterman [2] proposed several refinements including revised 

curve-fitting routines. Curve-fitting automates parameter selection but must be initialized by 

a reasonable choice of values for those 

parameters. In his comments, Hesterman 

noted that he was still seeking “…a 

method for finding a good initial guess” to 

use in the curve-fitting routines. 

Earlier this year, I became aware of this 

need, when I agreed to port Bryce’s 

Mathcad parameter extraction routines 

[3] to Excel. After implementing his 

algorithm for the two-winding 

transformer model I began to explore a 

solution to the initial guess problem. My 

goal was to find a reliable method that 

executes in a time-frame comparable to 

or better than the curve-fitting routine 

itself. This report presents the results of 

that study and introduces the prospects it 

opens for further refinement of the curve-fitting routine. 

 My solution to this problem is an adaptation of a statistical inference methodology I 

originally developed to optimize component tolerances for maximum circuit yield [4]. In that 

context I referred to that methodology as Pass-Fail analysis. In the following paragraphs, I 

describe the Pass-Fail approach as I’ve applied it to initializing Bryce’s curve-fitting routines, I 

exemplify its operation by applying it to the two-winding transformer model. In anticipation 

of follow-up investigations, I introduce an additional feature of Pass-Fail analysis that provides 

important insights into the algorithm.  
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Hesterman’s two-winding transformer model. 



  

Solution By Pass-Fail Analysis: 

Pass-Fail methodology uses statistical inference to provide a computationally efficient Monte 

Carlo search for the initial parameter set. A range of parameter values is much easier to 

provide than a single initial guess and may even be programmed into the software. In 

principle, random sampling can ultimately identify an acceptable initial set of model 

parameters or, even, a final selection, if the number of samples is large enough. However, the 

modeling error figure of merit for each parameter set provides information that can guide the 

search toward a solution with much fewer samples. 

The flow chart above outlines an iterative search that uses computed errors to grade each 

sample on a pass-fail basis. To control the number of samples in each group, the passing level 

is set at a fixed (usually 20th but modifiable by the user) percentile level. After an initial 

random baseline, iterations select new parameter values from the distribution of passing 

values. At each iteration, the minimum error is identified and compared to a target value to 

terminate the iterations. A limit on the final number of iterations prevents the process from 

running indefinitely. Since the minimum error of a set of samples is, itself, a random variable, 
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half of the samples used at any iteration are retained from previous iterations. Consequently, 

the minimum error at each iteration is a non-increasing function of the iteration count. 

Appendix A derives and explains some of the mathematics employed by this algorithm. 

In addition to search routines and tolerance (yield) optimization, Pass/Fail methodology has 

potential application to a variety of topics including … 

• Tolerance/yield optimization: 

• Failure Diagnostics: 

• Design/product Reliability, MTTF: 

• Cost reduction: 

• Thermal Design:  

• Statistical sensitivity analysis: 

• Analog Testing: 
 
A Two-Winding Transformer Example:  
I tested the algorithm on a two-winding model using measurements provided by Bryce 

Hesterman [3]. This is the same transformer I used to develop the spreadsheet. The goal was 

to demonstrate convergence to an acceptable error measure with a run time comparable to 

or better than the curve fitting solver. Tests were run with two different ranges of resistor 

and coupling coefficient values. To view progress through four iterations, I set a low error 

target of 0.01. To limit the run time, 

I held the number of samples at 64 

(a power of 2). 

The adjacent figure shows the 

results for the first range of 

parameter values tested. The family 

of curves plotted represent the 

cumulative distribution of modeling 

errors calculated for the baseline 

and four successive iterations. Each 

curve ranges from zero at the 

lowest error up to one at the 

highest error. Points along the curve 

represent the probability of 

obtaining a modeling error at or 

below the x-axis value. 

 



  

The first important observation is that these curves shift consistently to the left (lower error 

values) from one iteration to the next. This is proof that the Pass-Fail approach is successful in 

driving down the modeling error. The second significant observation is that these curves are 

confined to an increasingly narrow range of error values. This is indicative of a convergent 

process. The downside of this observation is that the lowest error in the distribution is 

decreasing more slowly than any other value along the curve. The bottom line on this 

observation is that this approach would be very inefficient at locating the absolute minimum 

error. 

The upside of these results is that the algorithm is proven capable of providing the desired 

initial guess. Minimum error values from each iteration are tabulated above the distribution 

curves along with actual elapsed run time measured from the start of the baseline 

computation. After completing 

the Baseline phase in under 6 

seconds, the Pass-Fail 

algorithm averaged about 20 

seconds per iteration, 

completing four iterations in 

90 seconds. This compares 

favorably to the block solver 

for which typical elapsed time 

varies between 50 and 200 

seconds depending on how far 

it can reduce the modeling 

error. 

A second test of the algorithm 

confirmed the previous 

observations as can be seen 

from the adjacent figure. 

Substantially similar 

performance was obtained for 

a significantly wider range of parameter values. 

The Relative Effectiveness Metric (RE): 
An important by-product of the Pass-Fail algorithm is a statistical measure that can be used to 

quantify the contribution each of the model parameters makes towards determining the 

modeling error. The bar chart below presents RE data for the first of the two examples 

 



  

reported above. It ranks each parameter on a scale from 0.0 to 10.0 with 0.0 indicating that 

the parameter has no effect on the modeling error and 

10.0 indicating that the parameter completely determines 

the modeling error. The significant results are that the 

numbers are all similar and that they are all relatively 

small. I’ll explain the RE metric after discussing these 

results and the consequences they have toward follow-up 

studies of the curve fitting operation. 

Similar values indicate a degree of balance that is probably 

a desirable attribute of the model. If the Pass-Fail analysis 

were repeated several times using modeling errors at 

specific frequencies, it would show us whether, for 

example, any particular pairing of auxiliary winding 

resistance and coupling coefficient such as RAij/kij 

dominates the error at some specific frequency range. It 

would be interesting to see if frequency dependencies such as this could be used to optimize 

the curve fitting operation either in terms  of reducing the modeling error or speeding up the 

computation of that result. 

The relatively small RE results suggest further exploration to optimize the curve fitting by 

substituting some alternative to the model parameters. For example, there might be a more 

effective set of expressions from which we can calculate the resistance and coupling 

coefficient parameters. These two observations are left to be explored in future studies. 

The relative effectiveness metric is best explained in terms of the adjacent Pass-Fail diagram. 

The diagram shows the passing and failing 

probability distributions for a single parameter. 

The shaded region is the area between these 

two curves. That area goes to zero if the 

distributions overlap completely, to two if the 

distributions do not overlap anywhere and to an 

intermediate value in all other cases. Scaling 

that area by a factor of five produces an RE 

metric ranging from zero to ten. 

To understand how this metric reflects the effectiveness of the parameter, consider the two 

extreme cases mentioned above. Overlapping pass and fail distributions mean that any 

parameter value is equally likely to appear in a passing (low error) model or in a failing (higher 

error) model. This can only happen if the pass-fail distinction is completely determined by 
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some other parameter or combination of parameters. RE=0 means that the parameter has no 

effect on the modeling error. 

At the other extreme, the passing and failing distributions range over completely separate 

values. Every value of that parameter is always associated with the same outcome, either 

passing (low error) or failing (higher error) regardless of the values of all other parameters. 

This can only happen if the pass-fail distinction is completely determined by the parameter in 

question. RE=10 means that the parameter has 100% effect on the modeling error. Hence RE 

values for each parameter reduce the comparison of parameters to a list of single numbers. 

It is important to bear in mind, however, that the RE measures are statistics, random 

variables that can vary over a range of values. Values for various parameters must be 

statistically different for any conclusions to be drawn. Appendix B analyzes the statistics of 

the relative effectiveness measure. 

Summary and Conclusion: The bottom line is that the Pass-Fail algorithm solves the problem 

of initialing the curve-fitting algorithm for Hesterman’s mutual impedance transformer 

model. The function of the Pass-Fail initialization is to replace the initial guess with a, more 

easily chosen, initial range of parameter values. The Pass-Fail analysis is iterative and, in 

theory, capable of completing the curve-fitting operation. However, the directed search of 

the block solver is much more efficient at that task. For that reason, it is best to restrict the 

Pass-Fail algorithm to the initialization task with a modest target error on the order of 0.05 to 

0.10 and then apply the block solver. 

In the following figure an initial guess based is compared to measurements. The parameter 

values were computed in a single iteration with a target error of 0.05. At that error level the 

 



  

parameters match the measurements reasonably well except for the leakage inductances at 

frequencies above 50KHz. 

In addition to the main topic of curve fitting, the report introduces a relative effectiveness 

(RE) metric, which grades the parameters in terms of the degree to which it influences the 

modeling error. Example results demonstrate a relatively uniform sharing of influence among 

the parameters at a consistently low level. These observations suggest follow-up studies into 

prospects for either speeding-up the curve-fitting operation or reducing the modeling errors 

even further. Possibilities mentioned include resolving the modeling error into low, medium, 

and high frequency components to see if the added structure is beneficial to the curve-fitting 

operation. A second suggestion would be to introduce an equal number of new variables that 

have a one-to-one dependence on the original set (e.g., translations and rotations within the 

space of all parameters). These ideas are under consideration. 
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Appendix A – Constructing the Passing Distribution and Selecting Model Parameters from It 

Constructing the Passing Distribution: 

Given the formula for the passing pdf, the next challenge is to pick a random value of xi and in 

This appendix covers both aspects of the parameter selection process. The passing 

distribution must be constructed reliably before an effort is made to select from that 

distribution. Looking at the numbers, 10% to 20% of a 64-sample data set is a very sparse 

population. An estimate drawn from 80% to 90% provides at least 50 samples to work with. 

For that reason, the passing distribution is derived from the failing samples as follows. 

Let A be the event that the model lies within the 20th percentile (or whatever value we 

choose). If P(A) is the probability that a model chosen at random will be a member of the 

group that meet that test, then by definition of percentiles, P(A) = 0.2 and 1 - P(A) = 0.8. 

If xi represents the ith of 12 parameters selected at random, it will have a statistical 

distribution over the range of values allowed for selecting parameters. Probability theory 

defines two representations for the distribution of xi. The cumulative distribution (CDF) Pi(xi) 

is the probability that any value of this parameter lies at or below the numerical value chosen 

for this parameter. If I use xi to denote an arbitrary choice of the parameter and if I stick to xi 

as a test level, then Pi(xi) = Probability(xi ≤ xi). Probability theory also defines a probability 

density function (or pdf) pi(xi) such that pi(xi) dxi represents the probability that a chosen 

value xi will lie between xi and xi + dxi. The pdf and CDF are related by 

Pi(xi)= ∫ pi(ξ)d
xi

-∞

ξ 

where 𝜉 is a dummy variable. 

Probability theory also defines conditional probabilities, distributions, and densities. For 

example, Pi(xi|A) and pi(xi|A) represent, respectively the cumulative distribution and 

probability density functions of xi values for which event A applies meaning for values of 

parameter xi for which the associated model lies in the 20th percentile of modeling errors. In 

other words, pi(xi|A) is the passing pdf of xi and pi(xi|not A) is the failing pdf. 

The law of total probability relates all these pdf’s by the relation 

pi(xi) = pi(xi|A)P(A) + pi(xi|not A)(1-P(A)) 

which simply states that the density is a weighted sum of the only two possibilities. Either xi is 

a sample from a model in the 20th percentile, which happens 20% of the time or it’s from a 



  

model from the rest of the population , which happens 80% of the time. If we solve the above 

equation for pi(xi|A) we get a relation that lets us compute the passing distribution from the 

failing distribution and the total distribution as 

pi(xi|A)   =   
pi(xi)-pi(xi|not A)(1-P(A))

P(A)

          =   5 pi(xi)-4 pi(xi|not A)   

 

Note that this relation also means 

pi(xi|A)-pi(xi|not A) = 
pi(xi)-pi(xi|not A)

P(A)

                                              = 5 (pi(xi)-pi(xi|not A))

 

Selecting Model Parameters from the passing distribution: 

Given the formula for the passing pdf, the next challenge is to pick a random value of xi in 

such a way that the pdf of all such xi will equal the passing pdf. The most computationally 

efficient way to do that involves the cumulative distribution Pi(xi|A), which we can 

approximate from pdf values at discrete values of the parameter. If parameter xi ranges from 

xi,min to xi,max, we can partition that range into N equal intervals of width Δi = (xi,max - xi,min )/N. 

At each interval, the CDF would be approximated as 

P𝑖(x𝑖,𝐾|𝐀) = P𝑖(x𝑖,𝑚𝑖𝑛 + 𝐾 Δ𝑖|𝐀) = ∑ pi(x𝑖,𝑚𝑖𝑛+ kΔ𝑖|A)Δ𝑖

𝐾

𝑘=0

 

Intermediate values would be calculated by interpolation. For any given value of Pi, the xi 

would be computed by searching through the discrete values for upper and lower estimates 

and interpolating between them. By this mechanism we can select xi by selecting a random 

value from a uniform distribution between 0 and 1 and using that selection as a value of Pi. 

By this mechanism, the probability of selecting a value of xi at or below any xi would equal the 

probability of selecting a uniform random variable at or below Pi and that probability is equal 

to Pi. By that reasoning, the values of xi selected would have Pi as their CDF as required. 

Appendix B – Statistics of The Relative Effectiveness (RE) Metric: 
Using the notation introduced in Appendix A, we can express the area between the passing 

and failing distributions of the ith model parameter as: 

REi  = 5 ∫ | pi(xi|A) - pi(xi|not A) |d
∞

-∞

xi 



  

As described in the report, variations from parameter to parameter measure the relative 

effect of each parameter on the model error. But there are also statistical variations because  

1. The passing and failing distributions are estimates generated from a finite number of 

samples and 

2. The above is estimated from a finite sum. 

These statistical variations are the noise that 

obscures small parameter to parameter 

variations. The figure below shows distributions 

of the RE metric computed from 25 repetitions 

of the baseline analysis for the first example 

reported above. The RE distribution for coupling 

coefficient k24 shows that 95% of the statistical 

variations lie within a window a little more than 

±0.5 wide. Distributions of all parameters are of 

comparable width. These results suggest a rule 

of thumb judgement that parameter to 

parameter variations less than 1.0 be 

overlooked. 

As an illustrative example I ran another set of 25 

RE computations with k24 values selected over 

the full range of 0.0 to 1.0 but with all other parameters confined within a narrow range. The 

figure below demonstrates how the RE metric reveals the dominant parameter. 

 

 

 

  

Composite Plot Comparing RE Values

with one parameter dominant


